Abelian borders in binary words
نویسندگان
چکیده
منابع مشابه
Dyck Words, Lattice Paths, and Abelian Borders
We use results on Dyck words and lattice paths to derive a formula for the exact number of binary words of a given length with a given minimal abelian border length, tightening a bound on that number from Christodoulakis et al. (Discrete Applied Mathematics, 2014). We also extend to any number of distinct abelian borders a result of Rampersad et al. (Developments in Language Theory, 2013) on th...
متن کاملAvoiding Abelian Powers in Binary Words with Bounded Abelian Complexity
The notion of Abelian complexity of infinite words was recently used by the three last authors to investigate various Abelian properties of words. In particular, using van der Waerden’s theorem, they proved that if a word avoids Abelian k-powers for some integer k, then its Abelian complexity is unbounded. This suggests the following question: How frequently do Abelian k-powers occur in a word ...
متن کاملAbelian Repetitions in Partial Words∗
We study abelian repetitions in partial words, or sequences that may contain some unknown positions or holes. First, we look at the avoidance of abelian pth powers in infinite partial words, where p > 2, extending recent results regarding the case where p = 2. We investigate, for a given p, the smallest alphabet size needed to construct an infinite partial word with finitely or infinitely many ...
متن کاملAbelian Repetitions in Sturmian Words
We investigate abelian repetitions in Sturmian words. We exploit a bijection between factors of Sturmian words and subintervals of the unitary segment that allows us to study the periods of abelian repetitions by using classical results of elementary Number Theory. If km denotes the maximal exponent of an abelian repetition of period m, we prove that lim sup km/m ≥ √ 5 for any Sturmian word, an...
متن کاملComputing Abelian Periods in Words
In the last couple of years many works have been devoted to Abelian complexity of words. Recently, Constantinescu and Ilie (Bulletin EATCS 89, 167–170, 2006) introduced the notion of Abelian period. We show that a word w of length n over an alphabet of size σ can have Θ(n2) distinct Abelian periods. However, to the best of our knowledge, no efficient algorithm is known for computing these perio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2014
ISSN: 0166-218X
DOI: 10.1016/j.dam.2014.02.012